Những câu hỏi liên quan
khoimzx
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 2 2020 lúc 8:19

a/ Biến đổi tương đương:

\(\Leftrightarrow3a^2-3ab+3b^2\ge a^2+ab+b^2\)

\(\Leftrightarrow2\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow2\left(a-b\right)^2\ge0\) (luôn đúng)

b/ \(\frac{a^3}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3\sqrt[3]{a^2.ab.b^2}}=a-\frac{a+b}{3}=\frac{2a}{3}-\frac{b}{3}\)

Tương tự: \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b}{3}-\frac{c}{3}\) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c}{3}-\frac{a}{3}\)

Cộng vế với vế ta có đpcm

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Hải An
Xem chi tiết
Akai Haruma
29 tháng 5 2018 lúc 12:23

Lời giải:

Ta có:

\(\text{VT}=a-\frac{ab(a+b)}{a^2+ab+b^2}+b-\frac{bc(b+c)}{b^2+bc+c^2}+c-\frac{ca(c+a)}{c^2+ca+a^2}\)

\(=a+b+c-\left(\frac{ab(a+b)}{a^2+ab+b^2}+\frac{bc(b+c)}{b^2+bc+c^2}+\frac{ca(c+a)}{c^2+ca+a^2}\right)\)

Áp dụng BĐT AM-GM:
\(\text{VT}\geq a+b+c-\left(\frac{ab(a+b)}{2ab+ab}+\frac{bc(b+c)}{2bc+bc}+\frac{ca(c+a)}{2ac+ac}\right)\)

\(\Leftrightarrow \text{VT}\geq a+b+c-\frac{2}{3}(a+b+c)=\frac{a+b+c}{3}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c\)

Bình luận (0)
 Mashiro Shiina
29 tháng 5 2018 lúc 12:26

Xin câu 1 ạ !

Bình luận (0)
 Mashiro Shiina
29 tháng 5 2018 lúc 12:33

a) \(bdt\Leftrightarrow\dfrac{2}{3}\left(a-b\right)^2\ge0\) (đúng). \("="\Leftrightarrow a=b\)

Bình luận (0)
Yeutoanhoc
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 8 2021 lúc 16:54

a. Đề bài sai (thực chất là nó đúng 1 cách hiển nhiên nhưng "dạng" thế này nó sai sai vì ko ai cho kiểu này cả)

Ta có: \(abc=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow abc\ge27\)

\(\Rightarrow a^2+b^2+c^2+5abc\ge a^2+b^2+c^2+5.27>>>>>8\)

b. 

\(4=ab+bc+ca+abc=ab+bc+ca+\sqrt{ab.bc.ca}\le ab+bc+ca+\sqrt{\left(\dfrac{ab+bc+ca}{3}\right)^3}\)

\(\sqrt{\dfrac{ab+bc+ca}{3}}=t\Rightarrow t^3+3t^2-4\ge0\Rightarrow\left(t-1\right)\left(t+2\right)^2\ge0\)

\(\Rightarrow t\ge1\Rightarrow ab+bc+ca\ge3\Rightarrow a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\ge3\)

- TH1: nếu \(a+b+c\ge4\)

Ta có: \(ab+bc+ca=4-abc\le4\)

\(\Rightarrow P=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+5abc\ge4^2-2.4+0=8\)

(Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;2;0\right)\) và các hoán vị)

- TH2: nếu \(3\le a+b+c< 4\)

Đặt \(a+b+c=p\ge3;ab+bc+ca=q;abc=r\)

\(P=p^2-2q+5r=p^2-2q+5\left(4-q\right)=p^2-7q+20\)

Áp dụng BĐT Schur:

\(4=q+r\ge q+\dfrac{p\left(4q-p^2\right)}{9}\Leftrightarrow q\le\dfrac{p^3+36}{4p+9}\)

\(\Rightarrow P\ge p^2-\dfrac{7\left(p^3+36\right)}{4p+9}+20=\dfrac{3\left(4-p\right)\left(p-3\right)\left(p+4\right)}{4p+9}+8\ge8\)

(Dấu "=" xảy ra khi \(a=b=c=1\))

Bình luận (0)
Minh Hiền
Xem chi tiết
Phạm Kỳ Duyên
28 tháng 2 2016 lúc 13:39

\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ca+c^2\ge0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)

HĐT này đúng với mọi x

Bình luận (0)
Gia Tue
Xem chi tiết
Trần Thị Tuyết Nga
Xem chi tiết
Cheewin
10 tháng 5 2017 lúc 12:42

\(\dfrac{bc}{a}+\dfrac{ac}{b}=\dfrac{b^2c+a^2c}{ab}=\dfrac{c\left(a^2+b^2\right)}{ab}\ge\dfrac{c.2ab}{ab}=2c\)

\(\dfrac{ac}{b}+\dfrac{ab}{c}=\dfrac{ac^2+ab^2}{bc}=\dfrac{a\left(b^2+c^2\right)}{bc}\ge\dfrac{a.2bc}{bc}=2a\)

\(\dfrac{ab}{c}+\dfrac{bc}{a}=\dfrac{a^2b+c^2b}{ac}=\dfrac{b\left(a^2+b^2\right)}{ac}\ge\dfrac{b.2ac}{ac}=2b\)

Cộng vế theo vế:

\(2\left(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\ge a+b+c\)

Bình luận (0)
Olala
Xem chi tiết
Quỳnh
4 tháng 8 2020 lúc 21:35

Bài làm

a) Ta có: ( a - b + c )2 = [ a - ( b - c ) ]2 

= a2 - 2a( b - c ) + ( b - c )2 

= a2 - 2ab + 2ac + b2 - 2bc + c2 

= a2 + b2 + c2 + 2ac - 2ab - 2bc 

Mik làm mấy lần rồi nhưng vẫn ra kết quả như vậy, bạn xem lại đề nhé.

b) Ta có: a2 + b2 + c2 > ab + bc + ca

=> 2( a2 + b2 + c2 ) > 2( ab + bc + ca )

=> 2a2 + 2b2 + 2c2 > 2ab + 2bc + 2ca

=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca > 0

=> ( a2 + b2 + c2 ) + ( a2 + b2 + c2 - 2ab - 2bc - 2ca ) > 0

=> ( a2 + b2 + c2 ) + ( a - b - c )2 > 0 ( Luôn đúng )

Vậy a2 + b2 + c2 > ab + bc + ca ( đpcm ).

c) a2 + b2 + 1 > a + b + ab ( mik nghĩ cái a ở vế phải phải là a thôi chứ không phỉa a^2. bạn kiểm tra đề nha )

=> 2a2 + 2b2 + 2 > 2a + 2b + 2ab

=> 2a2 + 2b2 + 2 - 2a - 2b - 2ab > 0

=> ( a2 - 2ab + b2 ) + ( a2 - 2a + 1 ) + ( b2 - 2b + 1 ) > 0

=> ( a - b )2 + ( a - 1 )2 + ( b - 1 )2 > 0 ( luôn đúng )

Vậy a2 + b2 + 1 > a + b + ab ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
☆MĭηɦღAηɦ❄
4 tháng 8 2020 lúc 21:38

\(1,\left(a-b+c\right)^2=\left[\left(a-b\right)+c\right]^2\)

\(=\left(a-b\right)^2+2\left(a-b\right)c+c^2\)

\(=a^2+b^2+c^2-2ab-2bc-2ca\)

\(2,..2a^2+2b^2+2c^2-2ab-2ac-2bc\)

\(=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\)

\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Dấu "=" xảy ra khi a = b = c

3, Sửa đề : \(a^2+b^2+1\ge a+b+ab\)

Ta có : \(2a^2+2b^2+2-2a-2b-2ab\)

\(=\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\)

\(=\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)

\(\Rightarrow2a^2+2b^2+2\ge2a+2b+2ab\)

\(\Leftrightarrow a^2+b^2+1\ge a+b+ab\)

Dấu "=" xảy ra khi a = b = 1

Bình luận (0)
 Khách vãng lai đã xóa
Nghĩa Phạm Tuấn
4 tháng 8 2020 lúc 21:38

1)\(\left(a-b+c\right)^2=\left[\left(a-b\right)+c\right]^2\)\(=\left(a-b\right)^2+2\left(a-b\right)c+c^2\)                                                                                                                                                     \(=a^2-2ab+b^2+2ac-2bc+c^2\)   

                                                                             \(=a^2+b^2+c^2-2ab-2bc+2ac\)(Đề bài sai nhá bạn)

2) Ta có: \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}\forall a,b,c\in R}\)<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\in R\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=a^2-2ab+b^2+b^2-2ab+c^2+c^2-2ab+a^2\)

                                                                           \(=2a^2+2b^2+2c^2-2ab-2bc-2ca\)

<=>\(2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\forall a,b,c\in R\)

=>\(a^2+b^2+c^2\ge ab+bc+ca\)

3) Theo câu 2, với c=1 =>\(a^2+b^2+1\ge a+b+ab\)

                               

Bình luận (0)
 Khách vãng lai đã xóa
Cô gái thất thường (Ánh...
Xem chi tiết
Ƹ̴Ӂ̴Ʒ ♐  ๖ۣۜMihikito ๖ۣ...
18 tháng 4 2019 lúc 21:56

3

Ta có: \(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+2a\left(b+c\right)+\left(b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow\text{Đ}PCM\)

Bình luận (0)
Ƹ̴Ӂ̴Ʒ ♐  ๖ۣۜMihikito ๖ۣ...
18 tháng 4 2019 lúc 22:08

2b)

Ta có: \(x^2+y^2-4x-2y+5=0\Leftrightarrow x^2+y^2-4x-2y+4+1=0\Leftrightarrow\left(x-2\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)

c) \(x^4-11x^2+4x-21=0\Leftrightarrow x^4-10x^2+25-x^2+4x-4=0\)

\(\Leftrightarrow\left(x^2-5\right)^2-\left(x-2\right)^2=0\Leftrightarrow\left(x^2-x-5+2\right)\left(x^2+x-5-2\right)=0\)

đến đây tự làm

Bình luận (0)
Ahwi
18 tháng 4 2019 lúc 22:16

Bài 2:

b/   \(x^2+y^2-4x+2y+5=0\)

\(\Rightarrow x^2+y^2-4x+2y+4+1=0\)

\(\Rightarrow\left(x^2-4x+4\right)\left(y^2+2y+1\right)=0\)

\(\Rightarrow\left(x-2\right)^2\left(y+1\right)^2=0\)

\(\orbr{\begin{cases}x-2=0\Rightarrow x=2\\y+1=0\Rightarrow y=1\end{cases}}\)

Bình luận (0)
Đặng Nguyễn Khánh Uyên
Xem chi tiết
Lưu Hiền
24 tháng 2 2017 lúc 23:07

câu 1 mình chưa nghĩ, nhưng câu 2 bạn bình phương 2 vees lên nhé

Bình luận (3)